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Abstract

Conner, Mark David. M.S., Purdue University, August 1995. Development and Evalua-
tion of Over-Land Rain Rate Algorithms for the SSM/I. Major Professor: Grant Petty.

Much work has been done in the past several years on rain-rate algorithms using the
Special Sensor Microwave/Images (SSM/I) for over-water regions. However, many users
of this sensor, including the Department of Defense (DOD), require rain/no-rain deter-
minations and rain-rate estimates in over-land areas of the world not adequately covered
by the present surface, upper-air, and radar observation network. Presented here is the
development of three new over-land rain-rate algorithms and an evaluation of them against
algorithms developed at the National Oceanic and Atmospheric Administration Satellite
Research Laboratory (NOAA SRL) and at the National Aeronautics and Space
Administration Goddard Space Flight Center (NASA GSFC). For ground truth, 10-cm
radar data taken at six sites and hourly raingage reports from approximately 2700
locations were used. Prior to use, the radar data were compared to the gage reports to
reject radar data likely to contain false echoes and to reduce site-to-site differences in how
the radars observe rainfall.

The Heidke skill score (HSS) is introduced as an alternate method to determine a
“best-fit” line to a set of data pairs. Least-squares linear regression, normally used for this
application, requires some assumptions about the error distribution that cannot be made

here. The HSS method produces reasonable results, while linear regression does not.




1. Introduction

One of the primary challenges to operational weather forecasting is a lack of reliable in
situ meteorological data in some areas of the world. Military weather forecasters in par-
ticular must make predictions for data-sparse areas on short notice (e.g., for southwest
Asia in 1990-91, northeast Africa in 1992-93, and central Africa in 1994). Remote
sensing of atmospheric variables can fill in the gaps between conventional surface, upper-
air, and radar observations and give the forecaster a more complete picture of the present
weather conditions. Atmospheric modelers can also benefit from increased spatial resolu-
tion of data, allowing them to more reliably depict sub-synoptic-scale features.

Precipitation occurring at or near the surface has significant effects on military opera-
tions. Thunderstorms can cause aircraft to modify or abort their missions. Even light rain
will degrade the accuracy and range of precision-guided weapons, both air-to-surface and
surface-to-surface. Prolonged rain will affect how well vehicles can traverse an area in the
absence of roads. For the military forecaster, the ability to remotely sense precipitation
areas reliably has a large positive impact on the precision and accuracy of the forecast, and
in turn increases the probability that the mission in question can be successfully completed.

Petty (1995) presents an overview of the current status of satellite-derived rainfall esti-
mation over land. There are two major sensor types used: visible/infrared (VIS/IR) sen-
sors and microwave sensors. A well-known example of the former is the Geostationary
Operational Environmental Satellite (GOES) Precipitation Index (GPI), described by
Arkin and Meisner (1987). The GPI algorithm uses IR cloud-top temperatures to estimate
rainfall, a very indirect retrieval method. The GPI appears to reproduce climatological
patterns over the tropics and subtropics when averaged over a sufficiently large temporal

and spatial scale.




Microwave instruments, on the other hand, offer a method that is more physically
based. Using properly-chosen frequencies, the instruments respond to precipitation-size
water and ice particles, while remaining largely insensitive to non-precipitating clouds.
Microwave imagers flown aboard spacecraft in the late 1970s and early 1980s, such as the
Electrically Scanned Microwave Radiometer (ESMR) and the Scanning Multichannel
Microwave Radiometer (SMMR), had channels between 6.6 and 37 GHz. These
frequencies were sufficient to distinguish the thermal emission of rain from the
radiometrically “cold” and highly polarized ocean background. Efforts to use the 37 GHz
channels over land areas (Weinman and Guetter, 1977; Spencer et al., 1983; Spencer
1986) met with partial success, mainly in cases of heavier convective rainfall, for which
brightness temperature depressions due to scattering by large ice particles are detectable
against the strongly emitting land background.

The Special Sensor Microwave/Imager (SSM/I) was the first spaceborne microwave
imager to include the 85.5 GHz frequency, making it possible to more reliably distinguish
rainfall over land, owing to the increased sensitivity of higher frequencies to the presence
of frozen precipitation aloft. Further, the increased spatial resolution and sampling
interval (12.5 km for the 85.5 GHz channels, 25 km for the lower frequencies) improves
the detection and delineation of mesoscale features, something not possible with the earlier
imagers.

Microwave retrieval techniques are further subdivided into two major categories:
physical inversion and empirical/statistical techniques. The former has the attraction of a
rigorous theoretical treatment of the retrieval problem; however, such techniques have
disadvantages such as (a) being far more complex and computationally expensive than the
other techniques, and (b) many degrees of freedom are introduced into the possible

solutions, requiring numerous [and sometimes arbitrary] constraints. The Kummerow




algorithm (Kummerow et al., 1989; Kummerow and Giglio, 1994a, b) and the
Mugnai/Smith algorithm (Mugnai and Smith, 1988; Mugnai et al., 1993) are of this type.

Empirical/statistical techniques do not attempt to explicitly model all factors that affect
microwave propagation. In general, these techniques take advantage of the fact that
precipitation-sized ice particles (and, to a lesser extent, large raindrops) depress the 85
GHz brightness temperatures by reducing the emissivity of the cloud. Many algorithms
such as the NOAA SRL (Grody, 1991, Wilheit et. al., 1994, Weng et al., 1994) employ
thresholding techniques for the lower-frequency channels to screen out surface scatterers
(snow cover, desert sand, etc.) from scattering associated with precipitation. The major
drawback to all these techniques is the dependence on the brightness temperature
depression at 85 GHz. Surface snow cover and ice particles aloft both cause this
depression, and are difficult to discriminate when the earth’s surface is relatively cold.
Most algorithms flag the snow cover based on brightness temperatures of the lower
frequencies and either assign a zero rain rate or do not attempt a retrieval. If relatively
few significant ice crystals are produced, such as with orographic and shallow or warm
convective precipitation, the algorithms will seriously underestimate the rain rate since
there is little or no 85 GHz scattering.

In this work, three experimental empirical/statistical algorithms for rain rate retrieval
using the SSM/I are evaluated against two algorithms developed at other laboratories.
The principal feature distinguishing these new algorithms from the others is that the pre-
cipitation signal is detected by way of deviations of the observed brightness temperatures
from the monthly average observed at a given location, with the objective of improved
detection of light rain. Chapter 2 details the data sources used in this study and the
processing done to prepare the data for intercomparisons. Chapter 3 describes the algo-
rithms used for the comparisons, and Chapter 4 outlines the results of the comparisons.

Chapter 5 gives a summary of the findings and Chapter 6 suggests areas for future work.




2. Data Sources and Processing

In order to compare the three data sources with differing resolutions, a common earth-
referenced grid was used. The grid is a simple latitude-longitude grid over the
conterminous United States (CONUS), extending from 60°W to 130°W and from 25°N to
50°N. The resolution is 0.25° in latitude and 0.33° in longitude, giving 21000 grid boxes.
The size of each grid box varies somewhat with latitude and is 29 km by 28 km near the
center of the grid. The box size was chosen to be approximately the same as the sample
size of the low-resolution SSM/I channels. Two grids per day were produced: one
containing data relating to the morning passes of the satellite, and one for the evening
passes.

While radar and satellite estimates are instantaneous rain rate retrievals, the gages
record an accumulation over a finite time period (in this study, one hour). Therefore, rain
rates determined from gage data are necessarily time-averaged. While this is different than
the other two methods, it will be shown later that gages can be used to validate satellite
rain rate algorithms if radar data are not available.

All data contain latitude/longitude information to a resolution of 0.01 degrees,
sufficient for accurate gridding. The navigation information in the SSM/I data may
contain errors of up to approximately 10 km, and no attempt was made to correct for
these errors prior to gridding. For the SSM/I and radar data, the center point of the pixel
determined the grid box in which it was placed. A count was maintained of the number of
values placed in the grid box and then an average taken once all data were entered for the

time period in question.




a. Special Sensor Microwave/Imager (SSM/I) data

Microwave radiation (A ~ 1 cm) interacts with the atmosphere in a different manner
than the more familiar visible and infrared wavelengths. Microwaves are minimally scat-
tered by the non-precipitating atmosphere and are only weakly attenuated by thin clouds
such as cirrus. There are major absorption and emission bands in the microwave region,
but the SSM/I channels are chosen so that they are in the spectral windows, wavelengths
where the atmosphere is relatively transparent and the surface is not obscured from the
satellite. One channel, however, was chosen to take advantage of the 22.235 GHz water
vapor resonance line.

The SSM/I is flown aboard the Defense Meteorological Satellite Program’s (DMSP)
Block 5D spacecraft. The satellites are flown in sun-synchronous orbits with an inclina-
tion of 98.8°. A comparison of three of the DMSP satellites is shown in Table 1. This
study utilized data collected by the F-11 satellite, whose sensor was fully functional

throughout the study period.

F-8 F-10 F-11
Launch date June 1987 | December 1990 | November 1991
Altitude range (km) 830-882 740-853 841-876
Period (minutes) 101.8 100.7 101.9
Ascending equatorial 0615 1942 1704
crossing time (local)

"The F-10 did not achieve its desired orbit, and the crossing time increases by 45
minutes per year. Time shown is as of mid-January 1991.

Table 1. Key parameters for F-8, F-10, and F-11 satellites.




Seven channels are used by the SSM/I for sensing thermal emission at four different
frequencies. Three frequencies are measured in horizontal and vertical polarization
(19.35, 37.0, and 85.5 GHz), while the remaining frequency (22.235 GHz) is measured
only in the vertical. For convenience, these channels will be referred to as 19V, 19H,
22V, 37V, 37H, 85V, and 85H.

The SSM/I sensor rotates about the satellite’s vertical axis with the antenna maintain-
ing a constant viewing angle at the earth’s surface of 53.1°. Although the SSM/I rotates
360°, only a 102° arc (fore or aft, depending on the satellite) centered on the satellite’s
subtrack is used. In this arc, the 85 GHz channels are sampled 128 times in the cross-
track direction, while the lower-frequency channels are sampled 64 times. The 85 GHz
channels are also sampled twice as frequently in the along-track direction. This gives the
85 GHz channels a sample interval of 12.5 km and the others 25 km in both the cross-
track and along-track directions. The total swath width is about 1400 km.

The sun-synchronous orbit means a single satellite will be present over a given area
only twice a day and at approximately the same local time each day. While this is not a
problem for instantaneous rain rates, it could result in a biased result for climatological
applications if there is a systematic diurnal component to rainfall occurrences. Further-
more, successive SSM/I swaths are not overlapping equatorward of 57° latitude. There-
fore, a fixed point on the earth may not be sampled for a considerable period of time.
Both problems can be reduced by using multiple satellites with different ascending times.

For this study, SSM/I data were obtained on Exabyte® tape format from Remote
Sensing Systems, Inc. These tapes contain reformatted data from the Temperature Data
Records produced by the Fleet Numerical Meteorology and Oceanography Center in
Monterey, California. The data for each scan contain antenna temperatures, location,

time, surface type, and calibration information. Wentz (1988) gives a complete descrip-




tion of the data contained on the tapes, and Hollinger et al. (1987) has a thorough discus-
sion of the SSM/I instrument.

The data passed through a two-stage quality control check prior to gridding. First, ifa
scan contained any pixels with unphysical brightness temperatures, the entire scan was set

to “missing”. Second, if individual pixels were determined to be over water by

22V -19V>40K (1)

then the individual pixel data at that location were set to missing. Next, synthetic high-
resolution scans were created for the low-resolution channels by interpolating from valid
neighboring pixels. Finally, the pixels that passed all the checks were fitted to the
common grid. Since the NASA GSFC algorithm had its own quality control checks built
in, the original data were passed to that algorithm, and the rain rates returned by that
routine were then gridded. Figure 1 shows the typical swath coverage over the
conterminous United States (CONUS) for a 12-h period.

It was desired to have a background grid to compare the twice-daily grids against.
This background grid should contain the “normal” brightness temperatures that the
satellite would see under no-rain conditions at the same time of day, so that short-term
(and probably meteorological) changes are emphasized. One grid was generated from the
morning satellite passes and one from the evening passes. The background grids were
calculated for each calendar month using the SSM/I data for that entire month. The same
processing was done as for the twice-daily grids, except the pixel-by-pixel test rejected

pixels failing (1) or

37V -85V >5.0K. (2)




04 JAN 1992 AM 737V — scale 200K—300K

Figure 1. SSM/I data coverage for the morning overpasses on 4 January 1992.
White areas indicate water was detected or no coverage.

Formula (1) rejected over-water pixels, while (2) rejected pixels where 85V was depressed
enough to indicate possible precipitation. This also removed pixels where the ground was
snow-covered as well, causing some locations in the winter season to have no pixels in a
month-long period passing all the criteria. Figure 2 shows the morning and evening
monthly averages from January and July 1992. Note the “missing” data over the northern
portion of the grid and in the Rocky Mountains in the January averages, indicating

persistent snow cover.

b. Raingage data

The raingage data were obtained from the National Climatic Data Center (NCDC) at

Asheville, North Carolina. The data set is a compilation of hourly rainfall totals observed
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Figure 2. Monthly 37V averages (1992) for (a) January morning passes, (b) July
morning passes, (c) January evening passes, and (d) July evening passes.

at approximately 2700 sites in CONUS. The dataset is available at no charge via the
Internet.

There are two major types of raingages in the network. The first is the standard
tipping bucket raingage used at most National Weather Service (NWS) first-order weather
stations. This gage has a resolution of 0.254 mm (0.01 inch). For this gage type, the
rainfall that occurred during a particular hour is recorded.

The second type is the Fisher-Porter gage. Instead of a tipping bucket, it has a
weighing gage that is calibrated to punch a recording tape after 2.54 mm (0.1 inch) of
rainfall has accumulated. When the dataset is compiled, the number of punches occurring
during the hour is converted to a rainfall amount and entered. Due to the coarseness of

the gage’s resolution, it is possible for light rain to have occurred for a number of hours,
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yet the gage’s record will show only one 0.1-inch event after 0.1 inches of new rainfall is
measured.

The raingage type is not reported in this dataset. However, it was possible to examine
the entire period of record for each gage to see if any amounts besides zero or 0.1-inch
increments were ever reported. If not, then the gage was determined to be of the Fisher-
Porter type. Fisher-Porter gages comprised 83 percent of the total network, which is
shown in Fig. 3.

The data were then fitted to the common grid. Of the grid boxes with gages in them,
about 85 percent had only one gage, with the remaining boxes having up to a maximum of
six. Multiple reports in a box were averaged. To examine the possible effects of the
differing gage resolution of rainfall amount, two grids were created: one containing all

gage reports, and the second containing only reports from non-Fisher-Porter gages.

Figure 3. Recording raingages in the conterminous United States.
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¢. Radar data

The radar data used for this study came from the RADAP-II (Radar Data Processor
version II) archive, which is also located at NCDC. The data were obtained through the
US Air Force Environmental Technical and Application Center (USAFETAC) Operating
Location A, which is the Air Weather Service liaison at NCDC. McDonald and Saffle
(1994) cover the archiving and formatting process in detail. The RADAP-II archive
project ended 30 September 1992.

The RADAP-II archive is digitized radar reflectivity data from 12 sites around the
United States. One site ceased archiving prior to 1992, and five of the sites are located in
or near mountainous areas, with significant ground clutter and mountain shadowing
problems. The remaining six sites [Tampa Bay, FL (TBW); Nashville, TN (BNA);
Monett, MO (UMN); Wichita, KS (ICT); Oklahoma City, OK (OKC); and Amarillo, TX
(AMA)] were relatively free of persistent ground clutter that could affect the results.

The RADAP-II network (Fig. 4) contained two types of radars, the WSR-57 and the
WSR-74C. Both have a 2.2° beam width and a 10 cm wavelength. The archive contains
both base-level and tilt-sequence scans, but for this study only the base-level scans were
used. Each scan is built from 180 radials of 2° width centered on even-numbered
azimuths, covering the entire 360° field. Each radial was divided into 1.85 km (1 nautical
mile) bins from 18.5 to 231 km (10 to 125 n.m.). Observations were taken every 10 or 12
minutes.

The reflectivity was coded as a value from 0 to 15, with each value corresponding to
an entry in a lookup table included in each observation for conversion to dBZ (Table 2).
Note that reflectivities less than the first threshold were coded as zero, or no precipitation.
This could result in underrepresentation of very light precipitation. During the conversion

from RADAP-II category to rain rate, the category value was converted to the




Figure 4. RADAP-II stations used in this study. Circles indicate 231 km (125 n.m.)
surveillance region.

RADAP-II category

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Cool
dBZ 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46
Rain rate 049 0.65 086 1.15 154 205 273 3.65 486 648 8.65 11.5 154 205 273

Warm
dBZ 18 24 30 35 38 41 43 44 46 47 49 51 53 55 57
Rain rate 049 1.15 2.73 561 8.65 133 17.8 20.5 273 31.6 42.1 562 749 999 133

Table 2: Typical RADAP-II reflectivity thresholds (dBZ) and associated rain rates
(mm h™") for warm and cool seasons.
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threshold dBZ value and then to a rain rate using the standard Z-R relationship for a

Marshall-Palmer raindrop distribution (from Burgess and Ray, 1986):

3)

| 10dBZA0 0.625
R(mmhr™) = .
200

Generally, it was desired to convert the azimuth-range format of the radar data into
some kind of Cartesian coordinate system for display and analysis purposes. Since the
range gates were 1 nautical mile in length, a natural choice was a latitude-longitude grid
with squares 1/60 of a degree on a side. To grid the data, each azimuth was “tweaked”
from plus to minus 1° in 0.25° increments from the nominal value; then, a conversion from
azimuth/range to latitude/longitude was performed and the reported rain rate value was
added to a sum for that grid box. After all azimuths had been processed, the grid boxes
were averaged by the count for each box, and a 3x3 interpolation was done for any
remaining missing values in the valid area.

To examine the possibility of persistent bias, either as a function strictly of range from
the radar site or of position relative to the radar, average rain rates and counts of pixels at
each threshold level were created for each radar site. If the occurrence and intensity of
precipitation are assumed to be randomly distributed across the radar’s surveillance
region, and if the radar accurately senses the true rain rate, the average rain rate field
should be relatively uniform and the pixel counts should not show a range dependence.
Figure 5 shows these results for the Nashville, Tennessee (BNA) radar site, but similar
results were observed for the other five sites in the study.

One problem is the annular structure visible in the average rain rate fields, which is
also manifested by an oscillation with range in the pixel counts at each threshold, as shown
in Fig. 6. It was hypothesized that the dBZ values produced by the radar were

inadvertently modified by a range-dependent square wave function before being
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Range 0—-25 dBZ BNA — Jan—Sep 1992

Figure 5. Average rain rate observed by the Nashville, TN (BNA) radar during
January-September 1992. Light gray near the center and on the periphery indicates
missing data.

thresholded by the RADAP-II processor and stored. To test this, smoothed pixel count
curves were constructed by processing the counts for each level through a 13-n.m.-wide
centered moving average (the approximate wavelength of the oscillation) and then
compared to the raw counts. Figure 7 shows the method to estimate the dBZ change
necessary in the RADAP-II input to make the raw counts conform to the smoothed
counts, and Figure 8 shows the dBZ changes computed for each threshold level. Even
though the threshold dBZ increments are uniform for the cool season, the warm season
had a better distribution of rainfall intensities and a longer period of record: the problems

with non-uniformity were not considered serious enough to offset these advantages.
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Figure 6. Cumulative count of number of pixels equal to or exceeding RADAP-II
categories for the “warm season” scans at BNA during January-September 1992.
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Figure 7: Estimating dBZ correction to remove square wave.
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Figure 8 shows a fairly uniform dBZ correction can be applied to all thresholds. The
highest four thresholds show more variability, but that is likely due to small sample size
(less than 1 percent of all pixels are in the highest four thresholds). While the graphs
indicate about a 1 dBZ correction would be the most appropriate, empirical adjustments
and similar analysis for other radar sites showed that a 0.75 dBZ (or about 18 percent)
correction was appropriate for all sites. Figure 9 shows a composite similar to that in Fig.
5, except this correction has been applied.

Another problem, illustrated best in Fig. 9, is the discontinuity in the average rain rate

about 50 km from the radar. To mitigate the effects of ground clutter, the RADAP-II

BNA warm-season thresholds
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Figure 8. Estimated correction (dBZ) for all thresholds to remove anomalous square
wave structure (BNA warm-season scans January-September 1992).
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processor created a hybrid base-level scan. This scan consisted of data taken from higher
antenna elevations within a certain site-dependent range (typically 40-60 km), and using
the 0.5° scan for more distant range gates. The composite shows this causes an unphysical
“jump” in the rain rates across that range threshold. To eliminate this, only data from

range gates where the antenna elevation was 0.5° were used in subsequent comparisons.

Range 0~25 dBZ BNA — Jan—Sep 1992

Figure 9. Corrected average rain rate observed at BNA.
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3. Over-land rain rate algorithms using SSM/I

a. Purdue-EV (EV) algorithm

Eigenvectors, also known as empirical orthogonal functions (EOFs) or principal
components (PCs), provide a means of explaining a covariance matrix through a few linear
combinations of the original variables. In this study, the seven-channel output of the
SSM/I at a particular location can be thought of as a vector T containing seven elements,
and for repeated observations a 7x7 covariance matrix St may be calculated. Principal
components analysis can then be applied to this matrix, resulting in 7 eigenvectors €, and
7 eigenvaluesii. The eigenvalues indicate the amount of variance explained by the
associated eigenvector, and the sum of the eigenvalues is the total sample variance. The
eigenvectors are all orthogonal to, and therefore linearly independent of, each other.
Additionally, the loadings of the eigenvectors are forced to be uncorrelated with one
another within the dataset from which the covariance matrix was generated. The first
eigenvector (having the largest eigenvalue) lies along the axis of maximum variability in 7-
dimensional space (in this case, n=7). The second eigenvector lies along the axis of
maximum variability that is orthogonal to the first. The third is orthogonal to the first
two, and so on. Eigenvector directions are arbitrary, and the vector may be multiplied by
—1 if desired. A more detailed discussion of PC analysis can be found in Johnson and
Wichern (1992, pp. 356-395).

To isolate the precipitation signal from other influences, the morning and evening
monthly averages for the SSM/I overpasses, as mentioned in Chapter 2, were used. For
each valid grid box and all twelve months of 1992, the morning average was subtracted
from the evening average, the covariance matrix computed, and then the eigenvectors.

Since precipitation screening was performed in the averaging process, the first eigenvector
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Channel 19V 19H 22V 37V 37H 85V 85H
€, 0.3657 0.4205 0.3377 03910 04384 03248 0.3532

Variance explained by this eigenvector: 89%

Table 3. Eigenvector corresponding to temperature signal.

(which is aligned with the axis of maximum variability) should be representative of the
temperature signal.

Table 3 shows the first eigenvector €, computed from this covariance matrix. The
eigenvector’s elements are all of similar magnitude, indicating all seven channels tend
show the same difference between the morning and evening values. This is consistent with
a temperature response vector, and will be denoted as €, from here on.

This temperature response vector can now be used to help isolate the precipitation
signal from the background. The daily morning and evening grids are used, with the
corresponding monthly averages subtracted to produce a set of 7-channel vectors
8T containing the departures from the average. These differences are then corrected for

temperature effects by using

ST' =81 - (5T - &, Je,.. @)

Equation (4) has the effect of setting 8T’ orthogonal to &.. The filtered differences
8T are presumed to contain short-term brightness temperature variations not associated
with surface temperature. Since these variations were relative to a monthly average, they
should contain variations on a time scale shorter than that period. Longer-term changes
such as vegetation type or coverage are not expected to have significant effects within the

month, though they would become obvious were a yearly average used. Shorter-term
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variations due to changes in snow cover or consistency, soil moisture, precipitation, and
other effects should be contained in these vectors.

To find the precipitation signal, PC analysis was used again on the covariance matrix
computed from the 8T’ vectors. To guard against contamination by snow cover, which
has a microwave signature similar to that of precipitation, only vectors from the months of
May, June, July, and August 1992 were included that were east of longitude 91°W in the
grid domain. Table 4 shows the resulting precipitation vector €,. This vector is consis-
tent with a precipitation signature over land, since it favors contrasts between the 85 GHz
channels (negative eigenvector elements) and the lower-frequency channels (positive
eigenvector elements).

It was also desired to isolate the precipitation signal from soil wetness effects. Since
soil wetness, at its extreme, would be a water surface, a soil wetness vector was simulated
by taking the 7-channel differences between typical averages over land and over water.
The averages selected were the global land and water averages for 40° N for the month of
April 1992 as observed by the F11 satellite. This vector was then converted to a unit
vector e€g. This vector is sensitive to the differences between the horizontal and vertical
channels, as shown by the horizontal channel vector elements being higher than the

vertical channel elements, and is therefore sensitive to the polarization effects of a water

Channel 19V 19H 22V 37V 37H 85V 85H

€p 0.2320  0.2010 0.2495 0.2112 0.1841 -0.6096 -0.6272
€ 0.3851 0.6295 0.2907 0.2673 0.4903  0.0886  0.2264

€s 0.1221  0.6553 -0.0664 -0.2678 0.2253 -0.5904 -0.2834

€p 0.2020 -0.3156 03938 0.5222 0.0457 -0.2901 -0.5878

Table 4. Precipitation and soil moisture vectors.
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surface. However, because all the elements are positive, it is also somewhat sensitive to
temperature. To reduce this, the eg is then set orthogonal to the temperature effects
vector &, by using (4), becoming e5. This vector is now far less sensitive to temperature
changes, since a joint change in all seven channels (surface temperature change) produces
far less of a change in &} than it does for é;. Finally, €, was set orthogonal to eg,
becoming e, . This last vector should be as independent as possible from temperature and
soil moisture effects. It is more difficult to evaluate empirically, however, because it is
now orthogonal to two other vectors. The e} vector is used with the brightness

temperature differences 8T to compute a scalar “precipitation” field as

Pay =& -3T. (5)

Equation (5), the dot product of the corrected precipitation vector and the vector
differences between the observed brightness temperatures and the monthly averages, is the
uncalibrated “eigenvector algorithm” (EV) used for the comparisons in Chapter 4. These
scalar values are computed for each high-resolution pixel value and then averaged and
gridded in the same fashion as the brightness temperature data. The resulting values are in
units of degrees Kelvin, with positive values indicating detection of a precipitation
signature. These values can be multiplied by a calibration constant (to be determined

later) to yield a rain rate in mm h™'.

b. Purdue-2Channel (2C) algorithm

The Purdue-2Channel algorithm can be thought of as a simplified version of the
precipitation eigenvector algorithm. Since the 37 GHz channels are less sensitive to

precipitation effects than the 85 GHz channels, but still respond to variations in the surface
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temperature, it was hypothesized that if the 85 GHz departure from average exceeded the
37 GHz departure from average, precipitation was likely. Also, vertical polarization
channels are less sensitive to specular reflection of the cold sky from surface water for the
viewing angle of the SSM/I, so the vertical polarization of the 85 GHz and 37 GHz
channels were chosen.

In vector form, the uncalibrated algorithm is

Pac = (8¢ -3T), ©)
where

€,c = {0,0,0,-1,0,1,0} and

8T  is the 7-channel vector difference between the observed
brightness temperatures and the monthly averages.

The negative sign in (6) is to associate positive values of p,c with areas of precipitation.

Units are in degrees Kelvin, as for the EV algorithm.

c. Purdue-4Channel (4C) algorithm

The Purdue-4Channel algorithm (4C) is more complex. It uses both polarizations of
the 37 GHz and 85 GHz channels to minimize temperature and surface water effects on
the rain rate retrieval.

Open water areas (and areas such as very moist soil that mimic open water), exhibit
strong polarization differences in their emission at all SSM/I frequencies, with the emissiv-
ity higher for vertical polarization than for horizontal (Petty, 1990). Drier land surfaces
have largely unpolarized emissions. Over land areas and in the absence of atmospheric

effects, it is hypothesized that as the fraction of the sample area covered by wet surfaces
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Figure 10. Microwave brightness temperature changes (arrow) as the fraction of a
sampled land surface that is “wet” increases.

increases, the brightness temperatures will change in a linear fashion as indicated by the
arrow in Fig. 10. This principle was first exploited by Weinman and Guetter (1977).

In the presence of wet soil and/or precipitation, the nonprecipitating-sky values indi-
cated by (Vo, Hy) and (V;, H,) in Fig. 10 are not known. However, climatological values
can be substituted with some success. Since precipitation-sized ice particles cause
unpolarized scattering of the surface emission at 85 GHz, as precipitation increases, the
85H and 85V pair will depart from the dashed line (non-precipitating-sky value) down and
left at a 45° angle. Thus, the linear distance of an arbitrary point (V,H) from the dashed

line can be related to a precipitation rate and is calculated by

d=[Vl___Iﬂ_m_}_|:V_ﬂ_} @)
l-m l-m

where m is the slope of the dashed line in Fig. 10, or
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A colder surface temperature, however, will also cause such a departure, though
usually of a smaller scale. Dry land surfaces are nearly blackbody emitters in the
microwave, so surface temperature changeé will cause brightness temperature changes of
approximately the same scale. Moderate to heavy precipitation, on the other hand, will
depress the brightness temperatures around 10-30 K. The precipitation signal is,
therefore, often stronger than the departure from climatology, but obviously that departure
affects the retrieval.

The 37 GHz channels are not nearly as sensitive to precipitation-sized ice particles as
the 85 GHz channels, but are affected by temperature in much the same fashion.
Therefore, applying (7) above to both frequencies and taking the difference of the results
should yield a measure of the precipitation rate that is fairly independent of temperature or
soil wetness.

The Purdue-4Channel algorithm is then

Pac = dgs — dy (8)
where dgs and ds7 are (7) applied to the 85 GHz and 37 GHz frequencies, respectively.

Units are degrees Kelvin.

d. NOAA SRL (SRL) algorithm

The NOAA SRL algorithm is based on a surface classification procedure developed by
Grody (1991) and has been updated since then (Wilheit et. al., 1994, Weng et. al., 1994,
Ferraro, 1995, personal communication). The algorithm uses a scattering index (SI) to

identify the scattering signal at 85 GHz from precipitation. The index is defined as

SI=F-85V, )




where F is the non-scattering (emission) component of 85V and is estimated from 19V

and 22V by

F=4519-0.44 x19V —1.775 x 22V - 0.00574 x (22V)2 . (10)

If SI is less than 10 K, a zero rain rate is assumed. To guard-against snow surfaces
and desert sand areas returning false positive rain rates, two further checks are performed.

If

22V <264 and 22V < 175.0 + 0.49 x 85V an

or

85V > 253.0 and (19V-19H) > 7.0, (12)

then the surface is assumed to be snow or desert sand, respectively, and the rain rate is set

to zero. If both tests are passed, then the rain rate psg. (mm h™') is computed from SI as

Pepy. = 0.00513 x (ST)"**. (13)

The values of pgsr. are limited to 35 mm h' to prevent spurious data from affecting the

retrievals.
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e. NASA GSFC (GSFC) algorithm

The NASA Goddard Space Flight Center (GSFC) algorithm is kn(;wn as the Goddard
Scattering Algorithm, Version 3 (GSCAT3). It is an update to the GSCAT?2 algorithm
discussed in Adler, et al. (1994). Huffman (1995, personal communication) provided the
GSCATS3 software.

The GSFC algorithm is similar to the SRL algorithm in that it uses simple threshold
checks to screen out pixels that are not likely to be experiencing precipitation, though the
screening is somewhat more complex. For example, the local standard deviation of 85H in
a 5x5 box around the pixel is used to pare down “ambiguous” areas (pixels near the 10 K
SI computed from (9) above). When this standard deviation is high, convective cores, and
hence rain, are implied. Low standard deviations coupled with a cold 22V temperature
indicate a “cold” and possibly snow-covered surface.

If all the checks are passed, the rain rate is calculated pixel-by-pixel using

_2620-85H)
Posrc 4188

b

where pgsrc = rain rate inmm h™ and
r = correction factor. (14)

The correction factor r is based on the surface type, which is inferred from the navigation
data and a surface-type database. This ratio is set to 0.8 over land areas, 1.2 over coastal
areas, and 1.6 over ocean areas (Huffman, personal communication). Values of pgsrc less

than 1 mm h™ are set to zero for land and coastal areas to reduce spurious values.
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4. Comparisons of satellite, radar, and raingage derived rain rates

a. Selecting and calibrating radar data based on gages

Radar reflectivity data often contain echoes that are not associated with precipitation.
The most common contamination is “ground clutter”, which are echoes near the radar site
that are reflections of objects on the ground surface. As described earlier, the RADAP-II
dataset used a hybrid scan to attempt to eliminate ground clutter. However, this intro-
duced a discontinuity in the mean radar reflectivity at the range where the low- and high-
antenna-elevation scans were merged. For this study, all data within this range were
eliminated, effectively removing nearly all ground clutter.

Anomalous propagation (AP) is a second cause of contamination. Normally, a radar
beam aimed at a slight upward angle relative to the horizon will propagate through the
atmosphere at higher and higher levels relative to the earth’s surface. Battan (1973, pp
17-28) describes the effects of nonstandard temperature and moisture gradients on radar
propagation. These gradients produce anomalous gradients in the refractive index of the
atmosphere, leading to AP. This can be in the form of “subrefraction”, where the radar
beam is bent upwards from its normal path, or “superrefraction”, where it’s bent
downwards back towards the earth’s surface. The form of AP of most concern here is
“superrefraction”, since it causes false echoes.

Meteorological conditions that favor superrefraction are not normally associated with
precipitation. The most common condition for superrefraction is a surface-based inversion
due to subsidence or radiational cooling. Subsidence generally indicates high pressure and
anticyclonic flow, and strong radiational cooling indicates a lack of cloudiness. Neither
are common in areas of precipitation, yet the resulting superrefraction can cause strong

echoes on a radar display.
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The RADAP-II data record format has a flag the radar operator can set to indicate AP,
and the data processing rejected all scans where this flag was set. Subjective review of
several time series of images taken from the six radar sites used in this study indicated this
flag was not always set properly, and early attempts at satellite-radar and gage-radar
correlations indicated this happened often enough to significantly affect them. Figure 11
shows the dBZ value associated with the mean rain rate for one hour observed at Tampa
Bay, FL (TBW) with raingage and surface weather reports for the same hour
superimposed. None of the radar observations during this hour was flagged by the

operator as having anomalous propagation, even though none of the surface weather

Scole 0-60 dBZ TBW 920201 — 13007
4

Figure 11. Reflectivity (dBZ) corresponding to mean rain rate observed at TBW for
the hour ending 1300 UTC 1 February 1992. Weather symbols are surface observa-
tions (single dash indicates no weather reported) and numbers indicate gage precipi-
tation totals (mm) associated with the same time period.
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reports indicated any precipitation during that hour.

Composite radar images were made for each hour by computing the mean rain rate for
all the radar scans during the previous hour. For example, the 0200 UTC composite
would be the mean reflectivity observed of all radar scans from 0101 to 0200 UTC. This
scheme was chosen to coincide with the observation method used for the raingages. No
composite was made for hours where more than one observation was missing.

Since the gage reports were already one-hour totals, no temporal averaging was
needed. To minimize possible spatial mismatches, the rain rate derived from the radar
composite was the mean of a 5x5 grid (46 km®) surrounding the gage’s location in the
radar grid. Because of the sparsity of the non-Fisher-Porter gages and the small number
of gages within each radar’s domain, there was no attempt to segregate by gage type.

To measure the “goodness” of the radar-gage matchups, the standard linear
correlation coefficient and the Heidke skill score (HSS) were used. The correlation
coefficient shows how well a linear relationship fits the data, while the HSS shows how
well one variable (radar) predicts the other (gages) using a 2x2 contingency table (Table
5). The HSS can range from -1 to 1, with -1 indicating perfect negative skill, zero
indicating no skill compared to chance, and 1 indicating perfect positive skill. Lee and
Passner (1993) discuss HSS and other measures of skill utilizing contingency tables for a
forecast verification problem. In this case, it was desired to see how well the radar was

“predicting” the gage rainfall. Non-zero rain rates for either system were counted as a

Forecasted YES  Forecasted NO

Observed YES A B
Observed NO C D

Table 5. Standard 2x2 contingency table for forecast verification.
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“yes”, while a zero rain rate was a “no”. For AP screening purposes, the HSS serves well
to measure how well precipitation areas on the radar correlate to gage precipitation
reports.

Based on Table 5, HSS is calculated by

2(4D - BC)
B +C*+24AD+(B+CYA4+D)

HSS = (15)

Table 6 shows the correlation coefficients and HSS for the six radar sites. Even with
1-h temporal averaging and 46 km’ spatial averaging for the radar, the statistics were
surprisingly poor. To further filter out temporal and spatial variations, these hour
composites were compiled to compute a mean rain rate over 6 h. At least 4 of the 6 h had
to contain valid hourly composites for a 6-h composite to be created. Requiring the 6-h
composites to have five or six valid composites greatly reduced the dataset without having
a significant effect on the results.

Within the valid area of the radar coverage, two counts of raingages were made: (1)
Gy, a gage composite of zero but a radar composite greater than zero, and (2) Gp, a gage
composite greater than zero and a radar composite greater than zero. The composite was

rejected if

G()>Gp and G()+ Gp>2. (16)

This formula rejects composites (a) for radar-indicated rain areas, more than half of the
gages in that area show no rain, and (b) where the radar indicated rain was occuring at
more than two gage locations.

The threshold of 2 in (16) was found through experimentation using the HSS as a

measure of goodness. Increasing the Gy+Gp threshold above 2 decreased the HSS so the
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Radar site

TBW BNA UMN ICT OKC AMA

1-h composites

(N=) 69129 | 176815 | 142044 | 153086 | 196508 | 114274
HSS 0.219 0.353 0.373 0.309 0.326 0.174
Correlation 0.074 0.152 0.249 0.130 0.211 0.059
6-h composites
(N=) 11091 25190 18827 | 20393 | 28318 17904
HSS 0.267 0.476 0.485 0.413 0.422 0.239
Correlation 0.072 0.176 0.402 0.207 0.364 0.102

6-h selected
composites (N=) 6694 19287 12056 14040 | 20351 11486

HSS 0.573 0.599 0.685 0.621 0.594 0.463
Correlation 0.544 0.458 0.636 0.571 0.594 0.408

Table 6. Heidke skill scores (HSS) and correlation coefficients (r) for one- and six-
hourly composites. Selected composites are those that pass the criteria outlined in the
text.

threshold was left at 2. Table 6 shows that marked improvement in HSS and correlation
was obtained by selecting only those cases meeting the criteria, at the cost of removing
about 30 percent of the radar-gage matchups. The improvement at TBW was especially
noteworthy: subjective review of the radar reflectivity images such as those in Fig. 11
indicated this site had many more instances of widespread false echoes than any of the
other sites. Eliminating time periods where this appeared to be prevalent improved the
quality of the dataset.

The relationship between Gy and Gp showed that (16) was sufficient to reject
composites where the gages recorded no rainfall and a significant area of the radar had

echoes, yet not unnecessarily reject cases where only a small area indicated a misidentifi-
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cation by the radar (the reason the Go+Gp threshold was not set less than 2). The 6-h time
periods corresponding to the rejected composites were recorded and radar data from those
time periods were excluded from future satellite-radar and gage-radar comparisons.

Mean rain rates were also computed for the 6-h gage composites and radar composites
(using the 5x5 spatial average for the radar as mentioned above) where both methods
indicated rainfall during the composite time period. This was done to remove the effects
of temporal and spatial mismatches, and to reject occurrences where either the gage or the
radar indicated precipitation that was unconfirmed by the other. Since rain rates are not
normally distributed about some mean but are instead highly skewed toward low values, a
ratio of mean rain rates should be more statistically valid than using the bias obtained
from a linear regression analysis (a few points near the high end of the distribution have a
disproportionately large effect on the bias obtained by linear regression). Table 7 shows
the ratio of these mean rain rates at the six radar sites used in this study for the nine-month
period of the study.

The temporal variation of the radar/gage ratio is considerable. A more consistent
change in the ratio would lead to the hypothesis that the mean Z-R relationship changes
with the season as the weather transitions from predominantly stratiform precipitation to
more convective precipitation. In this case, the temporal variation is so great that there is
no sound meteorological or physical basis for applying these corrections month-by-month
to the radar data. However, applying a correction by site only would reduce the site-to-
site bias relative to the gage totals, and allow valid comparisons of all radar sites
simultaneously. To correct the radar-derived rain rates so that they correspond to the
gage-derived rates, the radar rain rates were divided by the “Mean” in Table 7.

The standard deviation of the logarithm of the monthly ratios is an indication of the
temporal variability in the radar/gage ratio, and perhaps an indication of the overall

reliability of the data from that radar site. Large variations in the monthly ratios are
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Radar site

TBW | BNA | UMN | ICT | OKC | AMA

Gag(f;:;;adar 17 46 58 44 51 33
January 0.1907 | 02899 | * | 02071 | 0.1387 | 0.1089
February 03996 | 03104 | 0.3246 | 0.1077 | 0.1749 | 0.0843
March 0.2956 | 0.2047 | 0.3636 | 0.5963 | 0.1076 | 0.4462
April 0.5394 | 0.2760 | 0.3381 | 0.4479 | 0.1366 | 0.8253
May 03980 | 03546 | 0.4840 | 03628 | 0.1143 | 02114
June 04775 | 02924 | 04306 | 0.4556 | 0.2443 | 0.8028
July 0.8167 | 03748 | * | 0.4300 | 0.0810 | 1.2560
August 0.8201 | 03444 | * | 05512 | 0.1138 | 0.5173
September 0.6174 | 0.2772 * 0.5053 | 0.2413 | 0.4326
Mean 0.5015 | 0.3125 | 0.4240 | 0.4455 | 0.1840 | 0.5568
Stfr;ifﬁ'y Oiégfs"f 0.4728 | 0.1798 | 0.1689 | 0.5528 | 0.3722 | 0.9288

Table 7. Ratio of radar/gage rain rates for RADAP-II sites during January-September
1992. An asterisk (*) indicates no data for that month.

probably unphysical and could be due to problems with the radar or poor sampling by
either the radar or the gages. Both are possible, as shown later in the satellite/radar and

satellite/gage comparisons.
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b. Use of linear regression and Heidke skill score to determine best-fit lines

Assuming the relationship between an algorithm’s output and ground truth is linear,
the usual method of calibration is to perform a linear regression analysis using the output
as the dependent variable X and the ground truth as the independent variable Y. Linear

regression makes some underlying assumptions about the data, namely that in the model

X=B0+B|Xi+8i (17)

the error terms ¢; are independent of the X; and normally distributed with a mean of zero
and a constant variance. Also, it is assumed that measurement error is associated with the
measurement of Y;, 1. e., theX; are known without measurement error.

The latter constraint is the most serious. Neter et al. (1990) discuss how the classic
linear regression model (17) is not valid if there is a measurement error associated with
each X;. In this case, the X; have errors associated with the measurements of the bright-
ness temperatures for each of the seven channels, and these errors cannot be assumed to
be small enough to be neglected.

The error terms g; cannot be assumed to be normally distributed with a mean of zero
in all cases. A sizable fraction of the data set has ¥; =0, and since rain rate must be non-
negative, the error term cannot be greater than zero, leading to a non-zero mean. This
again violates one of the major assumptions of the linear regression model.

The distribution of the rain rates is also problematic. Figure 12 shows a scatterplot of
rain rates obtained by the SRL algorithm and the radar-derived “ground truth” for the
BNA radar site. The vast majority of the points are near the origin, and in fact over 90

percent of the points in this sample lie directly on the origin. The few points in the upper




Scatterplot of radar vs. algorithm output - BNA
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Figure 12. Scatterplot of radar vs. SRL algorithm rain rates for BNA for January-
September 1992.

right portion of the graph have a substantial influence on any least-squares linear
regression line.

Box-Cox transformations (Neter et al., 1990) can correct for non-linear relationships,
skewness of error terms, and unequal error variances. Since there is no evidence of
nonlinearity for the new Purdue algorithms, and the GSFC and SRL algorithms are already
converted to rain rates, the Box-Cox approach can be used to attempt to correct for
problems with the error terms by using the transformation on both the X and Y variables.

Box-Cox transformations are simply power transformations of the form
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Y=Y (L=20),

(18)
Y'=log,Y (A=0)

For A <0, Y’ is undefined when Y is not greater than zero, which is undesired. For
continuous distributions above and below zero, this can be solved by adding constants so
that all X and Y are positive. However, rain rate distributions are not continuous below
zero. An acceptable solution is to use a value of A that has a defined value for zero and
deemphasizes the error variance for high numerical values of X and Y. A simple and
somewhat arbitrary choice is to use A=0.5, or /Y .

While a square-root transformation removes some of the skewness of the error terms,
it does not address the problems of measurement error in the dependent variable nor that
of non-normal distribution of error variance in the independent variable. This transfor-
mation is still useful in that the correlation coefficient » for such transformed variables may
give a better indication of the linearity of the relationship between ground truth and the
algorithm in question, without allowing a handful of points at the far end of the
distribution to have an undue influence on the regression and r.

In this work, we explore the possibility of using the Heidke skill score (HSS) as a
calibration tool in place of linear regression. While this use of HSS is somewhat
nonstandard and subjective, it does offer advantages over linear regression in cases where
the data are highly skewed because there are no underlying assumptions on how the data
and errors are distributed. An additional advantage is that HSS is a valid measure of the
skill of an algorithm at distinguishing rain exceeding a specified intensity, a useful
performance measure in an operational setting. The HSS varies from -1 to +1, with -1
indicating perfect negative skill, zero indicating no skill relative to chance, and +1 perfect

positive skill.
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In discussions of linear regression and algorithm calibration, there is a difference in the
use of certain terms. In statistics, the term bias is the slope of a linear regression line,
while most works discussing algorithms use the term to mean a constant over- or
underestimate, which is the intercept in linear regression. To avoid confusion, the terms
slope and intercept will be used.

Referring back to Table 5, it was shown that HSS is based on a yes or no
determination of a forecast and an observed variable. This yes/no decision can be applied
to a variety of parameters. Lee and Passner (1993) used HSS to score how thunderstorm
forecasts verified, with the occurrence/nonoccurrence of thunderstorms as the yes/no
criteria. For rain rates, the yes/no criteria can simply be whether the algorithm or
verification indicates rain or no rain.

However, HSS can be considered a measure of the skill of an algorithm to determine
whether the verification exceeded a specific threshold. In the above case, the threshold
was zero. If the threshold were set at 5.0 mm h, for example, the HSS would reflect the
algorithm’s skill at determining whether the rain rate at a particular location exceeded 5.0
mm h'. Now suppose that a number of skill scores were computed with the observed
threshold set at 5.0 mm h™', but the forecast threshold set at intervals from, say, 0 to 10.0
mm h'. If the algorithm was calibrated properly, the skill score at 5.0 mm h”' would be
the highest. However, if it had a slope of 0.5 (algorithm output indicated half the actual
rainfall rate), then the peak skill score would occur at a forecast threshold of 2.5 mm h™,

If both the forecast and observed skill scores were computed at intervals, a properly
calibrated algorithm would have the highest skill scores where the forecast threshold
equaled the observed threshold. If the algorithm perfectly replicated the observations, the
skill score would be 1.0 at those points, and a 2-D contour plot of the results would
indicate a maximum along the axis where the forecast threshold equals the observed

threshold.
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Figure 13 shows an idealized case where it is possible to determine slope and intercept
from the skill score plots. Note that the slope of the axis of maximum skill score is equal
to the slope obtained by linear regression and that where a line through this axis intercepts
the y-axis of the plot is equal to the intercept. Therefore, this technique holds promise as

a method of obtaining a valid slope and intercept for an arbitrary dataset.

Y threshold
¥ threshold

| |
2 4 6 8 10 2 4 6 8 10

X threshold X threshold

0 | | | |

Figure 13. Two-dimensional HSS plots for a uniformly distributed and perfectly
correlated dataset. (a) y;=x; (b)y;=5 + 0.5x;.

c. Comparison of satellite-derived rain rates to radar-derived rain rates

| Figure 14 shows 2-D HSS plots for rain rates for (5), (6), (8), (13), and (14), which
are the three Purdue algorithms, the SRL algorithm, and the GSFC algorithm, respec-
tively, versus the radar-observed rain rates at BNA. The linear relationship becomes
indistinct above rain rates of 8 mm h™'. In fact, the maxima trend to a vertical line at or

above this rain rate, indicating (a) the algorithms are insensitive to rain rates above this




39

value, or (b) the radar data does not faithfully represent such rain rates. Since all the
algorithms show this insensitivity at nearly the same rain rate, it was deemed more likely
that the fault was with the radar data.

To evaluate the other radar sites for possible inclusion into a composite dataset, HSS
plots were made for the EV algorithm versus radar rain rates at the other five sites (Fig.
15). The AMA and ICT radar sites showed substantially lower skill than the other four
sites even at lower rain rates. This, combined with the month-to-month variability noted
in Table 7 earlier led to removal of these two sites from the composite data set. These
distributions were not peculiar to the EV algorithm. Figure 15 also shows that OKC has
essentially no data points above 7 mm h™', and that UMN have very few data points above

12 mm h™', again something not unique to the EV algorithm.




(a) EV algorithm vs. BNA radar
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Algorithm threshold (deg K)

Figure 14. HSS plots for algorithm rain rate thresholds vs. BNA radar rain rate
thresholds. (a) Purdue-EV (b) Purdue-2C (c) Purdue-4C (d) GSFC (e) SRL
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(b) 2C algorithm vs. BNA radar
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Figure 14 (continued).
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(d) GSFC algorithm vs. BNA radar
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(e) SRL algorithm vs. BNA radar

o

0
ORE

Algorithm threshold (mmh™)

Figure 14 (continued).
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(a) EV algorithm vs. TBW radar
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Figure 15. Purdue-EV algorithm rain rate threshold vs. rain rate at other radar sites.
(a) TBW (b) UMN (c) ICT (d) OKC (¢) AMA
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(b) EV algorithm vs. UMN radar
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(c) EV algorithm vs. ICT radar
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Figure 15 (continued).
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(d) EV algorithm vs. OKC radar
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(e) EV algorithm vs. AMA radar
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Figure 15 (continued).
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Figure 16. Algorithm rain rate thresholds vs. radar rain rate thresholds from a

(a) EV algorithm vs. BNA OKC UMN TBW radars
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combined dataset from the BNA, OKC, UMN, and TBW radars. (a) Purdue-EV (b)
Purdue-2C (c) Purdue-4C (d) GSFC (e) SRL




(b) 2C algorithm vs. BNA OKC UMN TBW radars
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(c) 4C algorithm vs. BNA OKC UMN TBW radars
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Figure 16 (continued).




(d) GSFC algorithm vs. BNA OKC UMN TBW radars
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(e) SRL algorithm vs. BNA OKC UMN TBW radars
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Figure 16 (continued).
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Figure 16 shows the HSS plots for a composite dataset consisting of the algorithm
output and radar observations from BNA, TBW, UMN, and OKC. Table 8 shows the
best-fit lines obtained by linear regression and from a subjective line drawn along the
maxima of the skill score plots, and correlations for the untransformed data and for a x*°-
*? transformation. Since the additional radar sites had little data for rain rates above 10
mm h”, there was correspondingly little change in that portion of the graph. Because of
the uncertainty of the data at the higher rain rates, the subjective best-fit line on the HSS
plots was chosen to fit the more definite trend shown below 10 mm h™.

For the linear relationship y = a + bx, normally the y-intercept a is reported.
However, for the calibration, the x-intercept is needed instead, which is @’ in the

relationship y = b(x - a’). The calibrated results y, for each Purdue algorithm j were

calculated by:
V= bj(x,j ——ajf) if x; 2 aj, or
y; =0 if x; <aj (19)

The linear regression and correlation coefficients were recalculated for the calibrated
Purdue algorithms. The slopes should become near unity and the x-intercepts near zero
for an ideal case. Because the linear regression model is not usable in this case, and
because the best-fit line applied was not from linear regression, the parameters do not

become the ideal. However, both have trends in the right direction.
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Linear regression HSS-determined Correlation coefficient
Slope | x-intercept | Slope | x-intercept | Linear Sq. root

EV (uncal.) | 0.099 -0.567 0.34 4.48 0.521 0.581
EV (cal.) 0.715 -0.063 * * 0.563 0.696
2C (uncal.) | 0.102 -0.355 0.34 4.48 0.503 0.562
2C(cal) | 0.681 -0.063 * * 0.558 0.696
4C (uncal.) | 0.096 -0.726 0.39 4.80 0.508 0.554
4C (cal.) 0.641 -0.086 * * 0.557 0.685
GSFC 0.306 -0.222 1.43 0.00 0.542 0.644
SRL 0.415 -0.165 1.20 -0.40 0.555 0.712

Table 8. Slopes and x-intercepts from linear regression and HSS method and correla-
tion coefficients for untransformed and square-root-transformed data for algorithms
vs. a composite dataset from the BNA, OKC, UMN, and TBW radars. Linear regres-
sion and correlation coefficient results also shown for calibrated Purdue algorithms.

d. Comparison of satellite-derived rain rates to raingage-derived rain rates.

As noted earlier, the satellite-derived rain rates are instantaneous snapshots of the rain
rate field with some spatial averaging due to the pixel sample size and the subsequent
gridding process. This is also true for the radar-derived rain rates. Raingages, on the
other hand, are point estimates of the rain rate averaged over some temporal domain (in
this case, over one hour). While this is a disadvantage, the gage data are superior to the

radar data in other respects: (1) the gages are a more direct measure of the true rain rate
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and thus less susceptible to calibration errors, and (2) the gage data cover the entire
CONUS instead of small portions of it.

Figure 17 shows the HSS plots for all five algorithms versus all gage reports (around
640 000 pairs). The stairstep pattern at intervals along the vertical axis is an artifact of the
Fisher-Porter gage reports. These gages report in 2.54 mm (0.10 inch) increments, and
this gage type comprises about 85 percent of the network. While the skill scores are
lower than for comparable points in Fig. 15 or Fig. 16, the linearity of the relationships is
encouraging. |

To eliminate the stairstep effect, and to test if the Fisher-Porter gages detracted from
the skill observed, the Fisher-Porter gage reports were removed from the dataset. Figure
18 shows the HSS plot for the EV algorithm vs. the non-Fisher-Porter gages. Removing
the Fisher-Porter gages eliminated the stairstep effect, but improved the skill scores only a
small amount.

Unlike the SRL and GSFC algorithms, the Purdue algorithms have no explicit
screening for the detection of likely snow-covered surfaces. These snow surfaces exhibit a
microwave signature similar to that of precipitation areas, and must be detected in order to
prevent the return of a false non-zero rain rate. To detect these snow areas, a snow-
cover flag was created based on the gridded brightness temperatures and (9), (10), and
(11) from the SRL algorithm. The grid boxes where this flag indicated a snow surface
were removed from the dataset. Snow detection was found to be unnecessary for the
radar comparisons because the radar sites had few instances of snow cover within the
radar domain.

Figure 19 shows the HSS plots for the “non-Fisher-Porter, no-snow” data. The
linearity of the algorithm-verification relationship is maintained, but the pattern has
become more complex. The skill scores have increased, especially at lower rain rates.

This was expected because (1) spurious Fisher-Porter gage results give errors of 2.54 mm
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rather than 0.254 mm and (2) the Purdue algorithms had no snow screening. Table 9

shows the best-fit line parameters and correlations similar to that for the radar

comparisons.

(a) EV algorithm vs. all gages

Gage threshold (mm h™)

16

32
Algorithm threshold (deg K)

Figure 17. Algorithm rain rate thresholds vs. raingage rain rate thresholds for all
gages. (a) Purdue-EV (b) Purdue-2C (c) Purdue-4C (d) GSFC (e) SRL




(b) 2C algoritm vs. all gages

Gage threshold (mm h)

32 48 64 80
Algorithm threshold (deg K)

(c) 4C algorithm vs. all gages
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Figure 17 (continued).
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(d) GSFC algorithm vs. all gages
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(e) SRL algorithm vs. all gages
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Figure 17 (continued).
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EV algorithm vs. non-FP gages

Gage threshold (mm h™)

Algorithm threshold (deg K)

Figure 18. Purdue-EV algorithm rain rate thresholds vs. raingage rain rate thresholds
for non-Fisher-Porter gages.




(a) EV algorithm vs. non-FP gages in no-snow areas
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Figure 19. Algorithm rain rate thresholds vs. raingage rain rate thresholds for non-
Fisher-Porter raingages in grid boxes not flagged as containing snow (see text). (a)
Purdue-EV (b) Purdue-2C (c) Purdue-4C (d) GSFC (¢) SRL
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(b) 2C algorithm vs. non-FP gages in no-snow areas
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Figure 18 (continued).




(d) GSFC algorithm vs. non-FP gages in no-snow areas
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(e) SRL algorithm vs. non-FP gages in no-snow areas
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Figure 18 (continued).




Linear regression HSS-determined Correlation
coefficient
Slope | x-intercept | Slope | x-intercept | Linear | Sq. root

EV (uncal.) | 0.071 -0.724 0.28 6.40 0.369 0.399
EV (cal.)) 0.455 -0.121 * * 0.404 0.506
2C (uncal.) | 0.078 -0.834 0.26 5.76 0.375 0.413
2C (cal.) 0.458 -0.111 * * 0.410 0.520
4C (uncal.) | 0.074 -1.034 0.27 5.44 0.357 0.375
4C (cal.) 0.451 -0.121 * * 0.396 0.493
GSFC 0.458 -0.102 0.77 -0.80 0.399 0.534
SRL 0.439 -0.151 0.92 0.04 0.349 0.457

59

Table 9. Slopes and x-intercepts from linear regression and HSS method and correla-

tion coefficients for untransformed and square-root-transformed data for algorithms
vs. non-Fisher-Porter gages in grid boxes not flagged as containing snow (see text).

Linear regression and correlation coefficient results also shown for calibrated Purdue

algorithms.
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5. Summary and Conclusions

Three new algorithms for determining rain rate over land from SSM/I brightness
temperatures were developed and evaluated against two algorithms from other research
groups. The algorithms were calibrated against both radar and raingage reports, and the
raingage data were used to filter out bad radar data and to apply a site-specific calibration
factor to the radar-derived rain rates. Figure 20 shows an example of the Purdue-EV
algorithm output along with the corresponding gage reports and radar scan from BNA.
The other algorithms showed patterns similar to that of the Purdue-EV algorithm.

The use of the Heidke skill score (HSS) as a proxy for linear regression for obtaining a
best-fit line was introduced. The results obtained by this method appear to be superior to
those obtained by linear regression for the datasets used in this study. Linear regression
assumes that (1) the dependent variable is known to a high degree of accuracy (no
significant error) and (2) the error terms for the independent variable are normally
distributed with a mean of zero. These assumptions are known to be false for the datasets
used and this, combined with the highly skewed distribution of the data, leads to the
conclusion that linear regression is an inappropriate method to determine a best-fit line.

The utility of the RADAP-II dataset as a calibration tool was disappointing, while the
raingage dataset was surprisingly valuable. All five algorithms exhibited non-linear
tendencies above ~10 mm h™ using the radar data, while the relationships were relatively
linear up to ~ 20 mm h™' using the gage data. While this does not prove the radar data are
faulty, the gage data are preferred as a célibration tool not only because of the linearity,
but also because gage measurements are more direct, the data cover a wider area, and the
sample size is larger (about 100 000 gage/algorithm pairs for the final dataset). The higher
skill scores at low rain rates for the radar dataset indicate that radar estimates are probably

more useful for rain/no-rain indications than the gages.
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Scale 0-60 dBZ BNA radar — 920703 - 1100 UTC

Figure 20. Raingage totals (mm x 10) for the hour ending 1300 UTC 3 July 1992.
Grayscale overlay is (a) corrected reflectivity (dBZ) observed by the BNA radar at
1300 UTC (b) reflectivity associated with the the Purdue-EV algorithm rain rate from
the satellite overpass at 1309 UTC.
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Figure 20 (continued).
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The similarity of the Purdue algorithms is striking. Since a common reference for all
three is the averages for a non-precipitating sky, it is hypothesized that the “brains” to
these algorithms lie in the negative departure from normal of the brightness temperatures.
It appears that as long as the 85 and 37 GHz channels are used, the remaining channels
add little to the overall performance.

The performance of the algorithms relative to one another is somewhat difficult to
assess. Using correlation coefficients from the square-root-transformed radar data, it
would appear the SRL algorithm is the best, then the Purdue algorithms, then GSFC.
When compared with the gage data, the order is reversed. Using the maxima on the HSS
plots, an indication of the optimum skill of the prediction of some rain rate, the ranking is
SRL, Purdue algorithms, then GSFC for both gage and radar as verification. In any case,
the Purdue algorithms are competitive with the others, though not provably superior to

either.
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6. Future Work

The testing and verification of these algorithms are by no means complete. The SRL
snow flag was used to remove suspected snow cover from the calibration dataset, but at
the cost of removing significant portions from the study area during the winter months. A
more rigorous test for snow cover may better delineate areas of snow without
unnecessarily removing areas from evaluation. Detection of precipitation over snow poses
a major challenge, since the brightness temperatures of airborne snow and surface snow
may be nearly identical. It may be possible to accumulate a time series of brightness tem-
peratures for a point on the surface and then check for anomalous depressions from a
shorter-term trend to detect precipitation.

The monthly non-precipitating-sky averages were computed using very simple thresh-
olds to reject times when a water or snow surface was detected or when precipitation was
apparent. Using any one of the precipitation algorithms as a basis for rejection may
improve the monthly averages, and if one of the Purdue algorithms is used, an iterative
approach might be taken to see if there is convergence towards some optimum set of
values.

The use of 2-D HSS plots should be subjected to a more rigorous statistical proof of
its validity. While the results for this study were quite useful (definitely more so than
linear regression), there may be unanticipated problems for some data distributions. Since
it gave reasonable results for some rather unreasonable distributions, the method’s utility
cannot be discarded simply because it has not been used elsewhere. The use of linear
regression found elsewhere in the literature for similar distributions, similarly, does not
validate that method’s applicability here.

While the domain used in this study contained a variety of terrain types, the algorithms

should be tested in other areas of the world. This study focused on CONUS because a
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large quanitity of data was easily obtained for this area. The Algorithm Intercomparison
Project (AIP) has several high-quality radar and raingage datasets covering western and
central Europe and could be used for additional comparisons.

The NOWRAD data received at Purdue from WSI Corporation are being archived for
future use. One subset of these data is a CONUS-wide composite of WSR-88D and older
radars on an 8 km by 8 km grid that is available every 15 minutes. The most exciting
aspect of these data is that the reflectivity values are far more rigorously quality controlled
than for any other dataset based upon operational (non-research) radars. Rain rates
derived from this dataset should have a much better correlation to true rainfall and should
serve quite well as a verification tool. Unfortunately, there are no SSM/I data available at
Purdue yet to coincide with these radar data since the archive was started quite recently
(April 1995). Future work on calibration of SSM/I algorithms should be able to make

excellent use of these high-quality radar data.
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